

MERI College of Engineering & Technology (MERI-CET)

Session: 2018-2019 Course: B.Tech

Name of the Faculty :

Discipline : Btech

Semester : 1ST sem

Subject : Engineering Chemistry

Lesson Plan Duration: 15 Weeks (From August 2018 to November 30)

Work load (Lectures/Practical)

Per week (in hours) : Lectures-04, Practicals-00

WEEK	THEORY		PRACTICAL	
	LECTURE DAY	TOPIC (including assignment /test)	PRACTIC AL DAY	TOPIC
1 ST	1 st	Phase Rule:-Terminology, One component system (H2O system and CO2 - system),	1. To study the Cochran and Badcock & Wilcox boilers	
	3 rd	two components system, Simple eutectic system (Pb-Ag),		
	4 th	system with congruent melting point (Zn - Mg). point (Na2SO4 - H2O)		
2 ND	5 TH 6 TH	system with incongruent melting point (Na2SO4 - H2O),Cooling curves. Assignment-1	2. To study the working and function of mountlings and	
	7 TH 8 TH	Catalysis: Characteristics of catalytic Reactions, Types of catalysis: Homogeneous catalysis		es in boilers
3 rd	9 TH 10 TH	Heterogeneous catalysis, Autocatalysis and Induced catalysis. Mechanism of Catalytic action (Intermediate compound formation theory & Adsorption theory).	3. To study Two-stroke & Four-Stroke Diesel Engines.	
	11 TH	Concept of promoters, inhibitors and poisioners. Enzymatic catalysis: its characteristics	Four-Str	Two-stroke & oke Petrol gines.
4 th	13 TH			
	14 TH 15 TH 16 TH	factors affecting, Mechanism (lock and key hypothesis and Induced fit hypothesis) Assignment-2	comp Refrigeratio determin	y the vapor ression n System and ation of its O.P
5 th	17 TH	Water and its Treatment: Part-I: Sources of water, impurities in water	C.	О.г

MERI College of Engineering & Technology (MERI-CET)

Session: 2018-2019 Course: B.Tech

Session: 20.			Course: B. recn	
	19 TH			
	20 TH	hardness of water and its		
6 th	21 TH	determination(EDTA method) , Units of hardness		
	22 TH	alkalinity of water and its determination, related numerical problems		
	23 TH	scale and sludge formation (composition	6. To study the	
	24 TH	properties and methods of prevention) Assignment-3	functioning of Window Room Air Conditioner	
7 th	25 TH	Boiler corrosion and caustic		
	26 TH	embrittlement. Priming and foaming		
	27 TH	Water and its Treatment: PART II:	7. To study the	
	28 TH	Treatment of water for domestic use,	constructional features and working of peiton	
8 th	29 TH	coagulation, sedimentation, filtration and disinfection. water softening: Lime-Soda treatment	wheel Turbine, Francis Turbine and Kaplan	
	30 TH	Assignment-4	Turbine.	
	31 TH	Zeolite, Ion - exchange process, mixed bed demineralization Desalination (Reverse	8. To calculate the Mechanical Advantage,	
	32 TH	Osmosis , electro dialysis) & related numerical	Velocity Ratio and Efficiency of single start,	
9 th	33 TH	Corrosion and its prevention: Mechanism of Dry and wet corrosion (rusting of iron),	Double start and Triple start worm & Worm	
	34 TH	types of corrosion.	Wheel. 9. To calculate	
	35 TH	galvanic corrosion, differential aeration	Mechanical Advantage,	
	36 TH	corrosion, stress corrosion. Factors affecting corrosion	Velocity Ratio and Efficiency of single	
10 th	37 TH	preventive measures (proper design,	purchase and Double	
	38 TH	Cathodic and Anodic protection, Electroplating, tinning, galvanization)	puprchase winch crab and plot graphs	
	39 TH	Assignment-5		
	40 TH	Lubrication and Lubricants: Introduction,	10. To find the	
11 th	41 TH	mechanism of lubrication, classification of	percentage error	
	42 TH	lubricants, (Liquid, Grease (semi - solid)	between observed and	
		and solid (MoS2, Graphite). Soil Corrosion, Microbiological Corrosion	calculated values of stresses in the member	
	TII		of a Jib Crane.	
	43 TH	Additives for lubricants. Properties of	11. To study simple	
	44 TH	lubricants (Flash & Fire point, Saponification number, Iodine value, Acid	screw jack and compound screw jack	
12 th	45 TH	value.	and determine their	

MERI College of Engineering & Technology (MERI-CET)

Session: 2018-2019 Course: B.Tech

<u> </u>			Course. B. recii
	46 TH	Viscosity and Viscosity index Aniline point,	efficiency.
	47 TH	Cloud point and pour point) Numerical problems based of viscosity Index.	
	48 TH	Biodegradable lubricants.	
		Assignment-6	
13 th	49 TH	Polymers and polymerization: Introduction	12. To find the
	50 TH	& Classification of polymers mechanism of	Mechanical Advantage,
	50	polymerization (Addition, condensation	velocity Ratio and
		and co- ordination) effect of structure on	Efficiency of a
		properties of polymers,	Differential Wheel and
			Axle.
	51 TH	Bio polymerization, Bio degradable	
		polymerization, preparation properties and	
	52 TH	technical application of thermo - plastics	
	52	(PVC, PVA, Teflon)& thermosetting(PF,UF),	
		Natural elastomers and synthetic rubber	
		(SBR,GR -N) . Silicones, Introduction to	
	-	polymeric composites.	
14 th	53 TH	Principle and application of Thermal	
	54 TH	methods of Analysis. (TGA, DTA, DSC),	
		Basic concepts of spectroscopy, Lambert	
		and Beers law, Basic concepts of	
		spectroscopy, Lambert and Beers law,	
	TU	Assignment-7	
	55 TH	Absorption and Emission spectroscopy	
	56 TH	Different spectroscopic Techniques (UV-	
		Visible and IR spectroscopy) elementary	
a =th		discussion on Flame photometry	
15 th			
		PRE-UNIVERSITY	
		EXAMINATIONS	